Boolean Functions with Large Distance to All Bijective Monomials: N Odd Case
نویسندگان
چکیده
Cryptographic Boolean functions should have large distance to functions with simple algebraic description to avoid cryptanalytic attacks based on successive approximation of the round function such as the interpolation attack. Hyper-bent functions achieve the maximal minimum distance to all the coordinate functions of all bijective monomials. However, this class of functions exists only for functions with even number of inputs. In this paper we provide some constructions for Boolean functions with odd number of inputs that achieve large distance to all the coordinate functions of all bijective monomials.
منابع مشابه
Hyper-bent Functions
Bent functions have maximal minimum distance to the set of affine functions. In other words, they achieve the maximal minimum distance to all the coordinate functions of affine monomials. In this paper we introduce a new class of bent functions which we call hyper-bent functions. Functions within this class achieve the maximal minimum distance to all the coordinate functions of all bijective mo...
متن کاملNew Upper Bounds on the Average PTF Density of Boolean Functions
A Boolean function f : {1,−1}n → {1,−1} is said to be sign-represented by a real polynomial p : Rn → R if sgn(p(x)) = f(x) for all x ∈ {1,−1}n. The PTF density of f is the minimum number of monomials in a polynomial that sign-represents f . It is well known that every n-variable Boolean function has PTF density at most 2n. However, in general, less monomials are enough. In this paper, we presen...
متن کاملNew Constructions for Resilient and Highly Nonlinear Boolean Functions
We explore three applications of geometric sequences in constructing cryptographic Boolean functions. First, we construct 1-resilient functions of n Boolean variables with nonlinearity 2n−1−2(n−1)/2, n odd. The Hadamard transform of these functions is 3-valued, which limits the efficiency of certain stream cipher attacks. From the case for n odd, we construct highly nonlinear 1-resilient functi...
متن کاملCharacterizations of symmetrically partial Boolean functions with exact quantum query complexity
We give and prove an optimal exact quantum query algorithm with complexity k+ 1 for computing the promise problem (i.e., symmetric and partial Boolean function) DJ n defined as: DJ k n(x) = 1 for |x| = n/2, DJ n(x) = 0 for |x| in the set {0, 1, . . . , k, n − k, n − k + 1, . . . , n}, and it is undefined for the rest cases, where n is even, |x| is the Hamming weight of x. The case of k = 0 is t...
متن کاملPOINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS
We study the space of all continuous fuzzy-valued functions from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$ endowed with the pointwise convergence topology. Our results generalize the classical ones for continuous real-valued functions. The field of applications of this approach seems to be large, since the classical case allows many known devices to be fi...
متن کامل